Midterm exam Calculus-3 (10 points free):

Total points to obtain 100
In all problems provide a brief justification for what you do

Problem 1 (15 points)

Show that $\lim _{\mathrm{n} \rightarrow \infty} \frac{x^{n}}{\mathrm{n}!}=0 \quad$ with $x \in(-\infty,+\infty)$

Problem 2 (15 points)

Prove that the series $\sum_{n=1}^{+\infty} n^{c} \sin \frac{1}{n^{c}}(c>1)$ is divergent!
Tip: see how the a_{n} term behaves when $n \rightarrow \infty$....

Problem 3 (20 points)

Consider the series $\quad \sum_{n=1}^{+\infty} \mathrm{n}!(2 x-1)^{n}$
(a) For which values of x is convergent (10 points)
(b) For which values of x is divergent (10 points)

Problem 4 (15 points)

Determine the value of the series: $\sum_{n=0}^{\infty}\left[x^{n}+y^{n}\right] / w^{n} \quad(|\mathrm{x}|,|\mathrm{y}|<|\mathrm{w}|)$

Problem 5 (25 points)

Suppose a mass m is attached to a spring with spring constant k , and let $k=m \omega^{2}$. If an external force $F(t)=F_{o} \cos (\omega t)$ is applied, then we have the equation of motion in presense of dissipation ($m, k, c>0$):

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=F(t) \tag{1}
\end{equation*}
$$

If we assume $c^{2}-4 m k<0$ show that a particular solution $x_{p}(t)$ of equation (1) is given by:

$$
x_{p}(t)=\left(\frac{F_{o}}{c \omega}\right) \sin (\omega t)
$$

